quacknet.lossDerivativeFunctions
1import numpy as np 2from quacknet.activationDerivativeFunctions import SoftMaxDerivative 3 4def MSEDerivative(value, trueValue, sizeOfLayer): 5 """ 6 Calculates the derivative of the Mean Squared Error (MSE) loss function. 7 8 Args: 9 value (ndarray): The predicted values from the model. 10 trueValue (ndarray): The true target values. 11 sizeOfLayer (int): The size of the output layer. 12 13 Returns: 14 ndarray: The gradients of the MSE loss. 15 """ 16 return 2 * (value - trueValue) / sizeOfLayer 17 18def MAEDerivative(value, trueValue, sizeOfLayer): 19 """ 20 Calculates the derivative of the Mean Absolute Error (MAE) loss function. 21 22 Args: 23 value (ndarray): The predicted values from the model. 24 trueValue (ndarray): The true target values. 25 sizeOfLayer (int): The size of the output layer. 26 27 Returns: 28 ndarray: The gradients of the MAE loss. 29 """ 30 #summ = value - trueValue 31 #if(summ > 0): 32 # return 1 / sizeOfLayer 33 #elif(summ < 0): 34 # return -1 / sizeOfLayer 35 #return 0 36 return np.sign(value - trueValue) / sizeOfLayer 37 38def CrossEntropyLossDerivative(value, trueVale, activationDerivative): 39 """ 40 Calculates the derivative of the Cross Entropy loss function. 41 42 Args: 43 value (ndarray): The predicted values from the model. 44 trueValue (ndarray): The true target values. 45 activationDerivative (function): The derivative of the activation function. 46 47 Returns: 48 ndarray: The gradients of the Cross Entropy loss. 49 """ 50 if(activationDerivative == SoftMaxDerivative): 51 return value - trueVale 52 return -1 * (trueVale / value)
5def MSEDerivative(value, trueValue, sizeOfLayer): 6 """ 7 Calculates the derivative of the Mean Squared Error (MSE) loss function. 8 9 Args: 10 value (ndarray): The predicted values from the model. 11 trueValue (ndarray): The true target values. 12 sizeOfLayer (int): The size of the output layer. 13 14 Returns: 15 ndarray: The gradients of the MSE loss. 16 """ 17 return 2 * (value - trueValue) / sizeOfLayer
Calculates the derivative of the Mean Squared Error (MSE) loss function.
Args: value (ndarray): The predicted values from the model. trueValue (ndarray): The true target values. sizeOfLayer (int): The size of the output layer.
Returns: ndarray: The gradients of the MSE loss.
19def MAEDerivative(value, trueValue, sizeOfLayer): 20 """ 21 Calculates the derivative of the Mean Absolute Error (MAE) loss function. 22 23 Args: 24 value (ndarray): The predicted values from the model. 25 trueValue (ndarray): The true target values. 26 sizeOfLayer (int): The size of the output layer. 27 28 Returns: 29 ndarray: The gradients of the MAE loss. 30 """ 31 #summ = value - trueValue 32 #if(summ > 0): 33 # return 1 / sizeOfLayer 34 #elif(summ < 0): 35 # return -1 / sizeOfLayer 36 #return 0 37 return np.sign(value - trueValue) / sizeOfLayer
Calculates the derivative of the Mean Absolute Error (MAE) loss function.
Args: value (ndarray): The predicted values from the model. trueValue (ndarray): The true target values. sizeOfLayer (int): The size of the output layer.
Returns: ndarray: The gradients of the MAE loss.
39def CrossEntropyLossDerivative(value, trueVale, activationDerivative): 40 """ 41 Calculates the derivative of the Cross Entropy loss function. 42 43 Args: 44 value (ndarray): The predicted values from the model. 45 trueValue (ndarray): The true target values. 46 activationDerivative (function): The derivative of the activation function. 47 48 Returns: 49 ndarray: The gradients of the Cross Entropy loss. 50 """ 51 if(activationDerivative == SoftMaxDerivative): 52 return value - trueVale 53 return -1 * (trueVale / value)
Calculates the derivative of the Cross Entropy loss function.
Args: value (ndarray): The predicted values from the model. trueValue (ndarray): The true target values. activationDerivative (function): The derivative of the activation function.
Returns: ndarray: The gradients of the Cross Entropy loss.