quacknet.lossFunctions
1import math 2import numpy as np 3 4def MSELossFunction(predicted, true): 5 """ 6 Calculates the Mean Squared Error (MSE) loss. 7 8 Args: 9 predicted (list / ndarray): The predicted values from the model. 10 true (list / ndarray): The true target values. 11 12 Returns: 13 float: The mean squared error between predicted and true values. 14 """ 15 return np.mean((np.array(true) - np.array(predicted)) ** 2) 16 17def MAELossFunction(predicted, true): 18 """ 19 Calculates the Mean Absolute Error (MAE) loss. 20 21 Args: 22 predicted (list / ndarray): The predicted values from the model. 23 true (list / ndarray): The true target values. 24 25 Returns: 26 float: The mean absolute error between predicted and true values. 27 """ 28 return np.mean(np.abs(np.array(true) - np.array(predicted))) 29 30def CrossEntropyLossFunction(predicted, true): 31 """ 32 Calculates the Cross Entropy loss. 33 34 Args: 35 predicted (list / ndarray): The predicted probabilities from the model. 36 true (list / ndarray): The true target values. 37 38 Returns: 39 float: The cross entropy loss between predicted probabilities and true values. 40 41 Notes: 42 Predicted probabilities are clipped to the range [1e-10, 1-1e-10] to avoid numerical instability. 43 """ 44 predicted = np.clip(predicted, 1e-10, 1-1e-10) 45 return -np.sum(np.array(true) * np.log(predicted))
5def MSELossFunction(predicted, true): 6 """ 7 Calculates the Mean Squared Error (MSE) loss. 8 9 Args: 10 predicted (list / ndarray): The predicted values from the model. 11 true (list / ndarray): The true target values. 12 13 Returns: 14 float: The mean squared error between predicted and true values. 15 """ 16 return np.mean((np.array(true) - np.array(predicted)) ** 2)
Calculates the Mean Squared Error (MSE) loss.
Args: predicted (list / ndarray): The predicted values from the model. true (list / ndarray): The true target values.
Returns: float: The mean squared error between predicted and true values.
18def MAELossFunction(predicted, true): 19 """ 20 Calculates the Mean Absolute Error (MAE) loss. 21 22 Args: 23 predicted (list / ndarray): The predicted values from the model. 24 true (list / ndarray): The true target values. 25 26 Returns: 27 float: The mean absolute error between predicted and true values. 28 """ 29 return np.mean(np.abs(np.array(true) - np.array(predicted)))
Calculates the Mean Absolute Error (MAE) loss.
Args: predicted (list / ndarray): The predicted values from the model. true (list / ndarray): The true target values.
Returns: float: The mean absolute error between predicted and true values.
31def CrossEntropyLossFunction(predicted, true): 32 """ 33 Calculates the Cross Entropy loss. 34 35 Args: 36 predicted (list / ndarray): The predicted probabilities from the model. 37 true (list / ndarray): The true target values. 38 39 Returns: 40 float: The cross entropy loss between predicted probabilities and true values. 41 42 Notes: 43 Predicted probabilities are clipped to the range [1e-10, 1-1e-10] to avoid numerical instability. 44 """ 45 predicted = np.clip(predicted, 1e-10, 1-1e-10) 46 return -np.sum(np.array(true) * np.log(predicted))
Calculates the Cross Entropy loss.
Args: predicted (list / ndarray): The predicted probabilities from the model. true (list / ndarray): The true target values.
Returns: float: The cross entropy loss between predicted probabilities and true values.
Notes: Predicted probabilities are clipped to the range [1e-10, 1-1e-10] to avoid numerical instability.